Linear layers
class torch.nn.Linear(in_features, out_features, bias=True)
对输入数据做线性变换:(y = Ax + b)
参数:
- in_features - 每个输入样本的大小
- out_features - 每个输出样本的大小
- bias - 若设置为False,这层不会学习偏置。默认值:True
形状:
- 输入: ((N, in_features))
- 输出: ((N, out_features))
变量:
- weight -形状为(out_features x in_features)的模块中可学习的权值
- bias -形状为(out_features)的模块中可学习的偏置
例子:
>>> m = nn.Linear(20, 30)>>> input = autograd.Variable(torch.randn(128, 20))>>> output = m(input)>>> print(output.size())