张量 Tensors

torch.is_tensor[source]

torch.is_tensor(obj)

如果obj 是一个pytorch张量,则返回True

  • 参数: obj (Object) – 判断对象

torch.is_storage [source]

torch.is_storage(obj)

如何obj 是一个pytorch storage对象,则返回True

  • 参数: input (Object) – 判断对象

torch.set_default_tensor_type[source]

torch.set_default_tensor_type(t)

torch.numel

torch.numel(input)->int

返回input 张量中的元素个数

  • 参数: input (Tensor) – 输入张量

例子:

>>> a = torch.randn(1,2,3,4,5)>>> torch.numel(a)120>>> a = torch.zeros(4,4)>>> torch.numel(a)16

torch.set_printoptions[source]

torch.set_printoptions(precision=None, threshold=None, edgeitems=None, linewidth=None, profile=None)

设置打印选项。 完全参考自 Numpy

参数:

  • precision – 浮点数输出的精度位数 (默认为8 )
  • threshold – 阈值,触发汇总显示而不是完全显示(repr)的数组元素的总数 (默认为1000)
  • edgeitems – 汇总显示中,每维(轴)两端显示的项数(默认值为3)
  • linewidth – 用于插入行间隔的每行字符数(默认为80)。Thresholded matricies will ignore this parameter.
  • profile – pretty打印的完全默认值。 可以覆盖上述所有选项 (默认为short, full)

results matching ""

    No results matching ""