torchvision.models

torchvision.models模块的 子模块中包含以下模型结构。

  • AlexNet
  • VGG
  • ResNet
  • SqueezeNet
  • DenseNet You can construct a model with random weights by calling its constructor:

你可以使用随机初始化的权重来创建这些模型。

import torchvision.models as modelsresnet18 = models.resnet18()alexnet = models.alexnet()squeezenet = models.squeezenet1_0()densenet = models.densenet_161()

We provide pre-trained models for the ResNet variants and AlexNet, using the PyTorch torch.utils.model_zoo. These can constructed by passing pretrained=True: 对于ResNet variants和AlexNet,我们也提供了预训练(pre-trained)的模型。

import torchvision.models as models#pretrained=True就可以使用预训练的模型resnet18 = models.resnet18(pretrained=True)alexnet = models.alexnet(pretrained=True)

ImageNet 1-crop error rates (224x224)

Network Top-1 error Top-5 error
ResNet-18 30.24 10.92
ResNet-34 26.70 8.58
ResNet-50 23.85 7.13
ResNet-101 22.63 6.44
ResNet-152 21.69 5.94
Inception v3 22.55 6.44
AlexNet 43.45 20.91
VGG-11 30.98 11.37
VGG-13 30.07 10.75
VGG-16 28.41 9.62
VGG-19 27.62 9.12
SqueezeNet 1.0 41.90 19.58
SqueezeNet 1.1 41.81 19.38
Densenet-121 25.35 7.83
Densenet-169 24.00 7.00
Densenet-201 22.80 6.43
Densenet-161 22.35 6.20

results matching ""

    No results matching ""