Automatic differentiation package - torch.autograd
torch.autograd提供了类和函数用来对任意标量函数进行求导。要想使用自动求导,只需要对已有的代码进行微小的改变。只需要将所有的tensor包含进Variable对象中即可。
torch.autograd.backward(variables, grad_variables, retain_variables=False)
Computes the sum of gradients of given variables w.r.t. graph leaves. 给定图的叶子节点variables, 计算图中变量的梯度和。 计算图可以通过链式法则求导。如果variables中的任何一个variable是 非标量(non-scalar)的,且requires_grad=True。那么此函数需要指定grad_variables,它的长度应该和variables的长度匹配,里面保存了相关variable的梯度(对于不需要gradient tensor的variable,None是可取的)。
此函数累积leaf variables计算的梯度。你可能需要在调用此函数之前将leaf variable的梯度置零。
参数说明:
- variables (variable 列表) – 被求微分的叶子节点,即 ys 。
- grad_variables (Tensor 列表) – 对应variable的梯度。仅当variable不是标量且需要求梯度的时候使用。
- retain_variables (bool) – True,计算梯度时所需要的buffer在计算完梯度后不会被释放。如果想对一个子图多次求微分的话,需要设置为True。